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Abstract

The traditional fuzzy clustering algorithm and its extensions have been successfully applied in 

medical image segmentation. However, because of the variability of tissues and anatomical 

structures, the clustering results might be biased by the tissue population and intensity differences. 

For example, clustering-based algorithms tend to over-segment white matter tissues of MR brain 

images. To solve this problem, we introduce a tissue probability map constrained clustering 

algorithm and apply it to serial MR brain image segmentation, i.e., a series of 3-D MR brain 

images of the same subject at different time points. Using the new serial image segmentation 

algorithm in the framework of the CLASSIC framework, which iteratively segments the images 

and estimates the longitudinal deformations, we improved both accuracy and robustness for serial 

image computing, and at the mean time produced longitudinally consistent segmentation and 

stable measures. In the algorithm, the tissue probability maps consist of both the population-based 

and subject-specific segmentation priors. Experimental study using both simulated longitudinal 

MR brain data and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data confirmed that 

using both priors more accurate and robust segmentation results can be obtained. The proposed 

algorithm can be applied in longitudinal follow up studies of MR brain imaging with subtle 

morphological changes for neurological disorders.

1 Introduction

Image segmentation plays a key role in quantitative analysis of MR brain images of many 

medical imaging applications, such as morphometry, automatic tissue labeling, tissue/region 

quantification, image registration, and image-guided surgery [1, 2, 3, 4, 5, 6, 7, 8]. In image 

computing tasks such as analyzing normal development, aging, and neuro-degeneration, it is 

important to conduct follow up study and to quantify the subtle longitudinal morphological 

changes of MR brain images. In these studies, a series of 3-D images of the same subject are 
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usually captured at different time-points, and the focus is to quantitatively measure the 

morphological changes of the whole brain or a specific regions [9, 10, 11] across with time. 

Longitudinal stability is critical when measuring subtle subject changes with time, since true 

signal might be overwhelmed by the measurement errors if one processes the serial images 

individually. Existing 3-D segmentation and registration algorithms may not be able to 

provide sufficient power for longitudinal stability since they process each 3-D image 

separately. It is also a challenge when the presence of vascular or other pathologies changes 

signal characteristics, such as tissue contrast, thereby rendering tissue segmentation 

unreliable. In fact, it is particularly important to accurately align corresponding longitudinal 

anatomical structures and measure the subtle anatomical changes across different time points 

by using the temporal information provided in the 3-D image series. Recently, several 4-D 

image processing algorithms and joint segmentation and registration algorithms have been 

proposed [12, 13], and among which, we have proposed a method that overcomes this 

limitation and significantly improves longitudinal stability or temporal consistency of 

segmentation by formulating the segmentation problem in 4-D [14].

In [14], a novel algorithm for longitudinal MR brain image segmentation was proposed 

based on an extension of the FANTASM algorithm [15] by using additional temporal 

constraints forcing temporally corresponding voxels being segmented with the same tissue 

type, which we refer to as CLASSIC (Consistent Longitudinal Alignment and Segmentation 

for Serial Image Computing). CLASSIC not only jointly segments a series of longitudinal 3-

D MR brain images of the same individual, but also estimates the longitudinal deformations 

in the image series, e.g. tissue atrophy. It iteratively performs two steps: i) jointly segment a 

series of 3-D images using a 4-D image-adaptive clustering algorithm based on the current 

estimate of the longitudinal deformations in the image series, and ii) refine these 

longitudinal deformations using a 4-D elastic warping algorithm [16, 17]. In this way, both a 

longitudinally-consistent segmentation and an estimate of longitudinal deformation of 

anatomy (e.g. atrophy) in a series of 3-D images can be estimated. The 4-D image-adaptive 

clustering algorithm used in CLASSIC extends the RFCM and FANTASM algorithms in 

three aspects. First, a new temporal consistency constraint term on the fuzzy membership 

functions is used in order to obtain temporally-consistent segmentation results. Second, the 

spatial and temporal constraints of the fuzzy membership functions are adaptive to the 

smoothness of the image, i.e. they are stronger in the regions that have more uniform image 

intensities, and vice versa. Thus the fuzzy membership functions are not necessarily overly 

smooth across tissue boundaries. Third, the clustering centers at each voxel location are 

adaptive to relatively local image intensity variations. In this way, the proposed 4-D 

clustering algorithm not only provides temporally-consistent segmentation results, but also 

adapts to local image intensity variations. If the image inhomogeneity has been corrected 

prior to applying CLASSIC, the clustering centers do not have to be spatially adaptive in 

order to improve the speed of the algorithm.

Since the size and intensities of different tissue classes vary greatly in different images and 

applications, the clustering results might be biased by the tissue population and intensity 

differences, as well as the spatial distribution of tissues or the anatomical structures. For 

example, most clustering-based algorithms tend to over-segment white matter tissues of MR 
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brain images. To solve this problem, we introduce a tissue probability map or segmentation 

prior constrained clustering algorithm and apply it to serial MR brain image segmentation. 

The tissue probability map consists of both the population-based and subject-specific 

segmentation priors. In this way, the clustering algorithm is not only driven by the image 

data but also constrained the probability of different tissue types of each image location, and 

increased segmentation accuracy and robustness is obtained. We then apply the new tissue 

probability constrained segmentation algorithm in the framework of the CLASSIC algorithm 

[14]. We therefore refer [14] as CLASSIC-I (with no tissue probability constraint) and the 

segmentation prior constrained method as CLASSIC-II.

Experiments are performed to segment both simulated and real longitudinal MR brain 

images. Both quantitative and visual comparisons are performed to compare the 

performance of CLASSIC with and without using the tissue probability maps, i.e., 

CLASSIC-I and II. For the simulated images, first the statistical model-based deformable 

simulation [18] is used to simulate different subject images, and then the longitudinal 

atrophy at the temporal lobe of each subject image are simulated using the atrophy 

simulation algorithm [19]. Because the underlying deformation and the global and local 

volumes are known, the correct classification rates are calculated to quantitatively evaluate 

the accuracy of the proposed algorithm. Both CLASSIC-I and II are compared, and the 

results show that by using the tissue probability map, more accurate segmentation results 

can be obtained. Specifically, the new algorithm overcomes the disadvantage of over-

segmentation of white matter for clustering-based image segmentation. For real images, the 

longitudinal 3-D T1-SPGR MR images of the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) are used in the experiments. In all the experiments, we focused on evaluating the 

performance of the algorithms in terms of obtaining temporally-consistent segmentation, 

capturing global and local intensity/contrast changes, as well as estimating longitudinal 

deformations. The results on simulated datasets demonstrate that by using tissue probability 

maps in the clustering algorithm more accurate segmentation results can be obtained, and it 

is less biased by the spatial and intensity distribution of different tissues. The new 

segmentation algorithm for CLASSIC and the 4-D HAMMER registration algorithm are 

publicly available upon request.

The remainder of the paper is organized as follows. In Section 2, we introduce the tissue 

density map constrained CLASSIC algorithm in detail. Section 3 presents the experimental 

results, and Section 4 is the conclusion of this study.

2 Method

2.1 The Framework of the Algorithm

The CLASSIC algorithm [14] is a framework for longitudinal alignment and segmentation 

of MR brain images, and it jointly segments a 4-D image and follows the underlying 

temporal changes in anatomical structures, in order to provide more stable and consistent 

tissue segmentation. Particularly, the CLASSIC algorithm iteratively performs the following 

two steps: i) Given a current estimate of the longitudinal deformations necessary to align 

serial 3-D images, it jointly segments the image series using the 4-D fuzzy clustering 

algorithm. The major idea is that temporal consistent segmentation is achieved for 
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longitudinally corresponding tissues; ii) It refines the underlying longitudinal deformations 

using a traditional registration algorithm. Notice that any traditional registration algorithm 

that takes an initial deformation field and refines the registration result based on the 

segmented images in order to better match the input images can be easily embedded into this 

framework. In this paper, we used the 4-D elastic warping algorithm, the 4-D HAMMER 

algorithm [16]. In our CLASSIC software, we provide an interface so that different 

registration algorithms can be incorporated. In this paper, the tissue probability map 

constrained clustering algorithm is proposed below, please refer to [16, 14] for details about 

the registration and segmentation steps for CLASSIC.

2.2 The Tissue Probability Map Constrained 4-D Clustering Algorithm

2.2.1 Tissue Probability Map Constrained 4D Fuzzy Clustering Algorithm—In 

this paper, we propose a tissue probability map or segmentation prior constrained clustering 

algorithm and apply it to serial MR brain image segmentation. This new segmentation can 

be embedded into the framework of CLASSIC. In traditional clustering-based segmentation, 

since the size and intensities of different tissue classes vary greatly in different images and 

applications, the clustering results might be biased by the tissue population and intensity 

differences, as well as the spatial distribution of tissues or the anatomical structures. Herein, 

we propose to use the tissue probability map as an additional constraint of the clustering 

algorithm to overcome such disadvantages.

Given a series of images It, t ∈ T, T = {t1, t2, …, tY} and the underlying longitudinal 

deformations Ft1 → t, t = t2, …, tY, the goal of the 4-D segmentation is to classify the tissues 

into white matter, gray matter and CSF, and the segmented images are denoted as , t ∈ 

T. Since Ft1 → t is the deformation from It1 to It, the corresponding point of a voxel i of 

image It1 will be point Ft1 → t (i) in image It. For simplicity, we denote point Ft1 → t (i) in 

image It as point (t, i), thus x(t,i) indicates the intensity of point (t, i). From the segmentation 

results of the images of a population or the serial images of a subject, we can globally align 

them onto the space of the serial images to be segmented and obtain the tissue probability 

maps p(t,i),k, which reflect the probability or segmentation prior of point (t, i) belonging to 

class k. These prior information can then be used as an additional constraint in the fuzzy 

clustering algorithm to reduce the effect of biased segmentation results because of the 

population and tissue intensity differences. This new tissue probability map constrained 4-D 

clustering algorithm can be formulated by minimizing the following new objective function:

(1)

where voxel x(t,i)(t ∈ T, i ∈ Ω(t1)) is classified into different tissue types by finding the 

clustering centers ct,k, the kth clustering center of image It, and μ(t,i),k, the fuzzy membership 

function of x(t,i) belonging to class k. The first term in Eq.(2) is the standard energy term for 

fuzzy clustering algorithm. The second term reflects the constraint of the tissue probability 

maps and γ is the weight for the constraint. The third and the forth terms are the spatial and 

the temporal segmentation consistency constraints along the longitudinal deformations, and 
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α and β are the weights, respectively. , and 

, where  is the spatial neighborhood of point (t, 

i),  is the temporal neighborhood of point (t, i) along the 

temporal deformation, and N1 and N2 are the numbers of addends for normalization. These 

spatial and temporal consistency constraints are designed by following the formulation in 

the FANTASM algorithm.

The fuzzy membership functions are subject to

(2)

It can be seen that the algorithm becomes CLASSIC (with no spatial adaption for clustering 

centers) when γ = 0, it is similar to the Robust FCM algorithm [20] when γ = 0 and β = 0, 

and it becomes the standard FCM algorithm when α = 0, β = 0, and γ = 0. Therefore, by 

setting properly the parameters α, β, and γ, we can apply constraints on spatial smoothness, 

temporal consistency, and prior tissue knowledge on the 4-D clustering algorithm.

Using Lagrange multipliers to enforce the constraint in Eq.(2), and calculating its partial 

derivatives with respect to mu and c, we can get the equations to iteratively update them:

(3)

where , and the equation to update the 

centroids can be acquired,

(4)

The 4D clustering algorithm can be summarized as follows: (1) Set α, β, γ, and 

neighborhoods  and , segment each image using FCM and thus we get the initial 

clustering centers ct,k; (2) Compute fuzzy membership functions using Eq.(3); (3) Compute 

centroids using Eq.(4); (4) If the algorithm converges (the difference of the values of the 

objective function between two iterations is smaller than a prescribed threshold), then output 

the segmentation results, otherwise go back to step (2). Similar to the standard FCM 

algorithm, the new algorithm usually converges after 10 to 30 iterations dependent on the 

difference values to terminate the iteration.
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2.3 Estimation of Tissue Probability Maps

In the previous section, we have introduced that the tissue probability maps p(t,i),k are used 

as a constraint in the 4-D segmentation algorithm. In this section, we explain how they are 

calculated in detail. In this work, a tissue probability map consists of the one calculated from 

the segmentation results of a population and the one calculated from some 3-D segmentation 

of the serial images of the subject.

2.3.1 Population-based segmentation priors—In order to obtain the population-

based segmentation priors, all the S sample images captured from a population are 

segmented using a 3-D segmentation algorithm [21], and then all these segmented images 

are linearly aligned onto the space of the template image Itemp. Denoting ntemp(i, k) as the 

number of linearly aligned sample images whose voxel i is segmented as tissue k, the 

segmentation prior of class k at voxel i is defined as,

(5)

where Ωtemp is the space of the template image, and . When applying the 

population-based segmentation prior onto a series of input images It, t = t1, …, tY, we can 

globally transform the segmentation priors  onto the space of the first image It1 by 

using the linear transformation that aligns the template image Itemp onto It1. Herein, the FSL 

flirt toolkit is applied in order to globally align the images. We denote these linearly 

transformed priors as , which reflect the knowledge learned from S samples of a 

population, where i ∈ Ω(t1) is defined in the space of the first image.

2.3.2 Subject-specific segmentation priors—Similar with the population-based 

priors, we can get the subject-specific segmentation priors using the segmentation results of 

the serial images under consideration. Initially, since the segmentation results are not 

available, the 3-D segmentation algorithm [21] is used to segment the image individually, 

and in the following iterations, the current segmentation results are used to calculate the 

subject-specific priors. The subject-specific priors can be obtained by first globally aligning 

them onto the space of the first time point image and then calculating,

(6)

where Y is the number of the serial images, and nsub(i, k) is the number of the serial images 

whose voxel i is segmented as tissue k.

2.3.3 Combining priors—The overall segmentation priors can be expressed as the 

combination of the population-based and the subject-specific priors using a weighting 

coefficient ξ,
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(7)

Notice that pi,k is defined on the space of the first image, i.e. i ∈ Ω(t1). Therefore, the 

segmentation priors at point (t, i) is p(t,i),k = pi,k, t = t1, …, tY. In this paper we set ξ as 0.7.

3 Results

3.1 Experiments on Simulated Longitudinal Data

Using the statistical simulation algorithm [18] from a template image, we first simulated 10 

new MR brain images acting as the first time point image of different subjects, and then 

simulated serial images of each simulated subject image using the atrophy/growth 

simulation package [19]. In this way, the ground truth of the tissue types and the 

longitudinal deformations of the serial images are known. Notice that the template image is 

also a simulated image: we added spatially correlated Gaussian noises to an already 

segmented image, and the mean intensities of white matter, gray matter and CSF are 45, 85, 

and 110, respectively, and the standard deviation of the Gaussian noise is set to 15. Both the 

two CLASSIC versions are used to process the simulated serial images, and the only 

difference between the two algorithms is that one uses the tissue probability map as an 

additional constraint and another not. In the experiments, we used the same program, while 

setting the parameter γ to zero to discard the constraint of the tissue probability maps. The 

tissue probability maps are calculated using the method described in Section 2.3, and the 3-

D segmentation results by applying FANTASM. The population-based priors are calculated 

by applying HAMMER [17] to align all the MR brain images in this study to the template 

image space, and the FSL linear transformation is used to align all the tissue probability 

maps onto the space of the first time point image.

Fig. 1 shows the template image and 3 simulated subject images. Using the statistical model-

based deformation simulation [18], various realistic anatomical shapes of MR brain images 

can be simulated. The second row in Fig. 1 gives the corresponding simulated segmented 

images of them. The simulated longitudinal data will be generated based on these segmented 

images which act as the ground truth of the segmentation. From each of the simulated 

subject image, we manually select a point within the temporal lobe and simulate a gradual 

atrophy of a spherical region around that point across with time. For each subject image, five 

time point images are simulated, and Fig. 2 gives an example of the simulated serial images. 

Notice that atrophy on left temporal lobe region (circled) is gradually introduced. The 

population-based tissue probability maps are shown in Fig. 3 (top), and Fig. 3 (bottom) 

illustrates the subject-specific tissue probability maps of the subject shown in Fig. 2.

We applied both CLASSIC-I and II for segmenting the above 10 simulated serial image 

datasets. Both the volumes and the correct classification rate (CCR) can be calculated for 

each segmentation result with respect to the ground truth within a volume of interest. 

Herein, we calculated the white matter and gray matter volumes, as well as the CCR for all 

the images within the previously selected spherical regions, and Fig. 4(a) shows the mean 

and standard deviation of the volumes, and Fig. 4(b) gives the correct classification rates for 

different subjects across different time points. It can be seen that i) in terms of local volume 
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measures, both versions obtained very similar volumetric measures as compared to the 

ground truth, however in terms of CCR, the CLASSIC with tissue probability maps is better: 

with higher CCR values. These results indicate that since the white matter and gray matter 

are combined together in the volumetric measure, there might be some difference in the 

segmentation results for different tissues since the total volumes are similar but the CCRs 

are different. In fact if calculating the volumes for white matter and gray matter separately 

(see Fig. 5), we can immediately see the difference of the two versions and the results 

indicate that by using the tissue probability maps, the clustering results overcomes the 

disadvantage of over-segmentation of white matter tissues, thus providing more accurate 

segmentation.

3.2 Experiments on Analyzing Longitudinal Images of Alzheimer’s Disease

We applied the algorithm to ADNI (www.loni.ucla.edu) data. The ADNI was launched in 

2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging 

and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private 

pharmaceutical companies and non-profit organizations, as a $60 million, 5-year public-

private partnership. The primary goal of ADNI has been to test whether serial magnetic 

resonance imaging (MRI), positron emission tomography (PET), other biological markers, 

and clinical and neuropsychological assessment can be combined to measure the progression 

of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). Determination of 

sensitive and specific markers of very early AD progression is intended to aid researchers 

and clinicians to develop new treatments and monitor their effectiveness, as well as lessen 

the time and cost of clinical trials. The Principle Investigator of this initiative is Michael W. 

Weiner, M.D., VA Medical Center and University of California, San Francisco. ADNI is the 

result of efforts of many co-investigators from a broad range of academic institutions and 

private corporations, and subjects have been recruited from over 50 sites across the U.S. and 

Canada. The initial goal of ADNI was to recruit 800 adults, ages 55 to 90, to participate in 

the research – approximately 200 cognitively normal older individuals to be followed for 3 

years, 400 people with MCI to be followed for 3 years, and 200 people with early AD to be 

followed for 2 years. For up-to-date information see www.adni-info.org. In the future, we 

plan to apply the proposed algorithm to calculate the temporal morphological changes for all 

the subjects and compare its results with the current SPM-based volumetric measures for 

each region of interest of the whole brain. The major goal will be to obtain stable 

longitudinal measure in order to obtain the subtle morphological changes and their 

differences for normal aging, MCI and AD.

Data collection and sharing was funded by the Alzheimers Disease Neuroimaging Initiative 

(ADNI; Principal Investigator: Michael Weiner; NIH grant U01 AG024904). ADNI is 

funded by the National Institute on Aging, the National Institute of Biomedical Imaging and 

Bioengineering (NIBIB), and through generous contributions from the following: Pfizer 

Inc., Wyeth Research, Bristol-Myers Squibb, Eli Lilly and Company, GlaxoSmithKline, 

Merck & Co. Inc., AstraZeneca AB, Novartis Pharmaceuticals Corporation, Alzheimers 

Association, Eisai Global Clinical Development, Elan Corporation plc, Forest Laboratories, 

and the Institute for the Study of Aging, with participation from the U.S. Food and Drug 

Administration. Industry partnerships are coordinated through the Foundation for the 
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National Institutes of Health. The grantee organization is the Northern California Institute 

for Research and Education, and the study is coordinated by the Alzheimers Disease 

Cooperative Study at the University of California, San Diego. ADNI data are disseminated 

by the Laboratory of Neuro Imaging at the University of California, Los Angeles.

In this preliminary test, we applied the algorithm to 25 ADNI datasets (MCI), and the goal is 

to evaluate the performance of the algorithm on real data. For all the original MR brain data, 

the FSL BET skull stripping program has been used to remove the skulls, and some mannual 

correction is conducted for some larger regions that have not been removed. Then, the 

FANTASM segmentation algorithm was used to segment the images in 3-D, and the 

segmentation results were used as the initial subject-specific tissue probability maps in the 

CLASSIC-II. In order to quantitatively analyze the segmentation results, we used a 

Temporal Consistency (TC) factor to reflect the temporal consistency of the segmentation 

results. Suppose  is the segmentation result (label) of x(t,i), the segmentation results of 

voxel i across different times can be denoted as . Denote Li as the 

number of label changes of corresponding voxels across time, then the segmentation of the 

corresponding voxels is consistent if Li is small, and vice versa. Therefore, the TC of 

segmentation results is measured by TC = 1/S(Ω′) Σi∈Ω′ (1 − Li/(Y − 1)), where Ω′ is the 

voxel set of the region of interest, and S(Ω′) is the number of voxels in Ω′. Both the TC 

values obtained from 3-D segmentation and CLASSIC-II are calculated and shown in Fig. 

7(a). Notice that longitudinal deformations among the serials images are needed in order to 

calculate the TC values. For 3-D segmentation results, we applied the 3-D hierarchical 

volumetric image registration [17] to obtain them, and for CLASSIC-II, both the 

longitudinal deformations and the 4-D segmentation results can be obtained simultaneously. 

It can be seen from the figure that the TC values for 4-D algorithm are much higher than 

those of 3-D, indicating that longitudinally stable segmentation and alignment of serial 

images is achieved. Moreover, we also calculated the volumes of interest (a spherical region 

within the left temporal lobe) and plotted the mean and standard deviations of such volumes 

for all the 25 image series. Notice that the scanning time and age information had not been 

used in calculating such values across different subjects. The purpose here is to show 

whether we can obtain the stable temporal volumetric changes for a number of subjects. The 

results are shown in Fig. 7(b), and it can be seen that a steady volumetric decrease has been 

found from these subjects (1.5% in terms of volumes).

Notice that the traditional quantitative image computing algorithms first segments the 

images and then performs image registration, and the registration results rely on the 

segmentation of individual image, and hence there is no mechanism to refine the 

segmentation and registration results. The proposed method iteratively registers and 

segments images. In this way, the registration algorithm could have better ability to refine 

the results and converge to acceptable or better registration results. The underlying 

assumption is that the majority of the image voxels is registered and segmented correctly 

during the first iteration, and thus the initializations of the registration in the following 

iterations are close to the solution in order to make sure the iterative procedure is stable. 

Since the proposed tissue probability map constrained 4-D segmentation algorithm has been 

applied in the CLASSIC framework, which iteratively refines the segmentation and the 
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longitudinal deformation. It is important to investigate how this iterative procedure 

converges. We therefore performed the algorithm for a series of real MR brain images and 

calculated the TC values of the segmentation results obtained from different iterations. Fig. 

8 shows the results. It can be seen that initially the TC value for such image series is 78.8% 

(this is based on the 3-D segmentation), and after one iteration the TC values increased to 

85.3%, and the TC values tend to be quite stable for the following iterations. Therefore, the 

proposed iterative procedure converges very fast, and we performed 2 iterations in all the 

experiments.

4 Conclusion

This paper proposed a tissue probability map constrained 4-D image segmentation algorithm 

for longitudinal image analysis. The algorithm iteratively estimates the longitudinal 

deformations among the image series that reflect the underlying structural changes across 

time and jointly segments the serial images. By using the tissue probability map as an 

additional constraint in the clustering algorithm, more accurate and robust segmentation 

results can be obtained for serial images. Experiments with simulated MR brain images and 

the ADNI data have confirmed the advantages of this algorithm.
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Figure 1. 
The template image (a) and three sample simulated subject images (b,c,d).
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Figure 2. 
A series of simulated images.
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Figure 3. 
The population-based segmentation priors (top) and the subject-specific segmentation priors 

(bottom, the subject is shown in Fig. 2) for WM (a), GM (b) and CSF (c), respectively. 

Notice that the population-based segmentation priors are in the template image space and 

will be affine transformed onto the first timepoint image, and the subject-based 

segmentation priors are in the space of the first timepoint image.
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Figure 4. 
The mean and standard deviation values of the local volumes and the correct classification 

rates (CCR) in side a spherical neighborhood manually drawn in the temporal lobe, for 10 

simulated series of images.
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Figure 5. 
The volumes of GM (a), WM (b) and GM+WM (c) are plotted for one series of images. It 

can be seen that by using the tissue probability map as an additional constraint, CLASSIC-II 

overcomes the problem for over-segmentation of white matter and improves the accuracy 

for gray matter and white matter
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Figure 6. 
An example of the 4-D segmentation of the ADNI data.
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Figure 7. 
Local volume measures and temporal consistency for real MR brain images. (a) The mean 

and standard deviation values of the local volumes of the spherical regions os temporal lobe 

for 25 subjects. The results indicates a steady volume decrease for the left temopral lobe; (b) 

The temporal consistency values for all the subjects calculated by the CLASSIC-II and 3-D 

segmentation (FAST). The results show that because of the use of the temporal deformations 

of the serial images, the segmentation of longitudinally corresponding tissues is more stable 

using the proposed algorithm.
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Figure 8. 
Illustration of the TC of CLASSIC-II at different iterations. The right column shows the TC 

maps at different voxel on the template space, and the average TC values are given for each 

case.
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